ich🐮❓iel - eviltoast
  • anomalous_current@feddit.de
    link
    fedilink
    Deutsch
    arrow-up
    6
    ·
    8 months ago

    du brauchst 2x2-Matrizen, damit du sie auch wie komplexe Zahlen miteinander multiplizieren kannst. Eine komplexe Zahl z= a +bi wird dann dargestellt als die 2x2-Matrix

    z = (a, -b; b, a) Wenn man zwei solche Matrizen multipliziert, sieht man, dass sich diese Multiplikation genau so wie die Multiplikation von komplexen Zahlen verhält. Das ganze ist übrigens im Prinzip dasselbe wie der SO(2) zu U(1)-Isomorphismus. Also ja, ich weiß auch nicht, was dieser Artikel soll - man kann komplexe Zahlen immer durch reelle 2x2-Matrizen ersetzen.

    • branchial@feddit.de
      link
      fedilink
      Deutsch
      arrow-up
      2
      arrow-down
      8
      ·
      edit-2
      8 months ago

      So ein Käse, die Standardherleitung der komplexen Zahlen ist der R2 mit entsprechender Multiplikation und Addition keine Matrizen vonnöten, siehe z.B. Rudin.

      Ganz streng genommen kannst du auch vektoren miteinander multiplizieren. Sind ja schliesslich 1x2 oder 2x1 Matrizen je nachdem wie du sie drehst. Nennt man inneres bzw. äußeres Produkt je nachdem wierum du sie aufstellst.

      • anomalous_current@feddit.de
        link
        fedilink
        Deutsch
        arrow-up
        3
        ·
        edit-2
        8 months ago

        Ja, du kannst natürlich auch den R^2 nehmen und eine custom Multiplikation drauf definieren - das ist, wie es standardmäßig gemacht wird. Mein Punkt war, dass eine bestimmte Unteralgebra der 2x2 reellen Matrizen mit der Standard-Matrixmultiplikation eine den komplexen Zahlen isomorphe Algebra bilden.

        Und nein, das innere und äußere Produkt sind für diesen Zweck nicht geeignet, da sie weder geschlossen oder assoziativ noch invertierbar sind. Wenn du ein Vektorprodukt definieren willst, dass sich u.U. so wie die komplexe Multiplikation verhält, schau dir mal Doran, Lasenby: Geometric Algebra for Physicists an. Dieser Ansatz verallgemeinert sich mit der Benutzung der geraden Unteralgebra der geometrischen Algebra des Raumes Cl(3) übrigens hervorragend auf Quaternionen, und mit der Raumzeit-Algebra Cl(1, 3) auf bikomplexe Zahlen.