As I understand, the FTL “transmission” in quantum entanglement is equivalent to just ripping a photograph in half, sticking the halves into envelopes and sending one of them to Australia.
By measuring the envelope you kept, i.e. opening it and seeing which half is in it, you gain instant knowledge, what the other half in Australia is.
This is mostly useless for communication, though, because the person in Australia does not get this information instantly.
In the case of quantum entanglement, the photograph halves are a particle, which has decayed into two particles, each of which have kept a shared property, like a spin of -1 and +1 respectively.
As I understand, the FTL “transmission” in quantum entanglement is equivalent to just ripping a photograph in half, sticking the halves into envelopes and sending one of them to Australia.
By measuring the envelope you kept, i.e. opening it and seeing which half is in it, you gain instant knowledge, what the other half in Australia is.
This is mostly useless for communication, though, because the person in Australia does not get this information instantly.
In the case of quantum entanglement, the photograph halves are a particle, which has decayed into two particles, each of which have kept a shared property, like a spin of -1 and +1 respectively.
This is the hidden-variables hypothesis and specific tests were made to check for it. See https://en.m.wikipedia.org/wiki/Bell's_theorem