🌟 - 2023 DAY 13 SOLUTIONS -🌟 - eviltoast

Day 13: Point of Incidence

Megathread guidelines

  • Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
  • Code block support is not fully rolled out yet but likely will be in the middle of the event. Try to share solutions as both code blocks and using something such as https://topaz.github.io/paste/ , pastebin, or github (code blocks to future proof it for when 0.19 comes out and since code blocks currently function in some apps and some instances as well if they are running a 0.19 beta)

FAQ


🔒 Thread is locked until there’s at least 100 2 star entries on the global leaderboard

🔓 Unlocked

  • hades@lemm.ee
    link
    fedilink
    arrow-up
    3
    ·
    edit-2
    3 months ago

    Python

    from .solver import Solver
    
    
    def is_mirrored_x(pattern: set[tuple[int, int]], max_x: int, max_y: int,
                      x_mirror: int, desired_errors: int = 0) -> bool:
      min_x = max(0, 2 * x_mirror - max_x)
      max_x = min(max_x, 2 * x_mirror)
      errors = 0
      for y in range(max_y):
        for x in range(min_x, x_mirror):
          mirrored = 2 * x_mirror - x - 1
          if (x, y) in pattern and (mirrored, y) not in pattern:
            errors += 1
          if (x, y) not in pattern and (mirrored, y) in pattern:
            errors += 1
          if errors > desired_errors:
            return False
      return errors == desired_errors
    
    def is_mirrored_y(pattern: set[tuple[int, int]], max_x: int, max_y: int,
                      y_mirror: int, desired_errors: int = 0) -> bool:
      min_y = max(0, 2 * y_mirror - max_y)
      max_y = min(max_y, 2 * y_mirror)
      errors = 0
      for x in range(max_x):
        for y in range(min_y, y_mirror):
          mirrored = 2 * y_mirror - y - 1
          if (x, y) in pattern and (x, mirrored) not in pattern:
            errors += 1
          if (x, y) not in pattern and (x, mirrored) in pattern:
            errors += 1
          if errors > desired_errors:
            return False
      return errors == desired_errors
    
    def find_mirror_axis(pattern: set[tuple[int, int]], max_x: int, max_y: int,
                         desired_errors: int = 0) -> tuple[None, int]|tuple[int, None]:
      for possible_x_mirror in range(1, max_x):
        if is_mirrored_x(pattern, max_x, max_y, possible_x_mirror, desired_errors):
          return possible_x_mirror, None
      for possible_y_mirror in range(1, max_y):
        if is_mirrored_y(pattern, max_x, max_y, possible_y_mirror, desired_errors):
          return None, possible_y_mirror
      raise RuntimeError('No mirror axis found')
    
    class Day13(Solver):
    
      def __init__(self):
        super().__init__(13)
        self.patterns: list[set[tuple[int, int]]] = []
        self.dimensions: list[tuple[int, int]] = []
    
      def presolve(self, input: str):
        patterns = input.rstrip().split('\n\n')
        for pattern in patterns:
          lines = pattern.splitlines()
          points: set[tuple[int, int]] = set()
          max_x = 0
          max_y = 0
          for y, line in enumerate(lines):
            max_y = max(max_y, y)
            for x, char in enumerate(line):
              max_x = max(max_x, x)
              if char == '#':
                points.add((x, y))
          self.patterns.append(points)
          self.dimensions.append((max_x + 1, max_y + 1))
    
      def solve_first_star(self) -> int:
        sum = 0
        for pattern, (max_x, max_y) in zip(self.patterns, self.dimensions, strict=True):
          mirror_x, mirror_y = find_mirror_axis(pattern, max_x, max_y)
          sum += (mirror_x or 0) + (mirror_y or 0) * 100
        return sum
    
      def solve_second_star(self) -> int:
        sum = 0
        for pattern, (max_x, max_y) in zip(self.patterns, self.dimensions, strict=True):
          mirror_x, mirror_y = find_mirror_axis(pattern, max_x, max_y, 1)
          sum += (mirror_x or 0) + (mirror_y or 0) * 100
        return sum