🦀 - 2024 DAY 13 SOLUTIONS -🦀 - eviltoast

Day 13: Claw Contraption

Megathread guidelines

  • Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
  • You can send code in code blocks by using three backticks, the code, and then three backticks or use something such as https://topaz.github.io/paste/ if you prefer sending it through a URL

FAQ

  • Gobbel2000@programming.dev
    link
    fedilink
    arrow-up
    2
    ·
    19 days ago

    Rust

    This problem is basically a linear system, which can be solved by inverting the 2x2 matrix of button distances. I put some more detail in the comments.

    Solution
    use std::sync::LazyLock;
    
    use regex::Regex;
    
    #[derive(Debug)]
    struct Machine {
        a: (i64, i64),
        b: (i64, i64),
        prize: (i64, i64),
    }
    
    impl Machine {
        fn tokens_100(&self) -> i64 {
            for b in 0..=100 {
                for a in 0..=100 {
                    let pos = (self.a.0 * a + self.b.0 * b, self.a.1 * a + self.b.1 * b);
                    if pos == self.prize {
                        return b + 3 * a;
                    }
                }
            }
            0
        }
    
        fn tokens_inv(&self) -> i64 {
            // If [ab] is the matrix containing our two button vectors: [ a.0 b.0 ]
            //                                                          [ a.1 b.1 ]
            // then prize = [ab] * x, where x holds the number of required button presses
            // for a and b, (na, nb).
            // By inverting [ab] we get
            //
            // x = [ab]⁻¹ * prize
            let det = (self.a.0 * self.b.1) - (self.a.1 * self.b.0);
            if det == 0 {
                panic!("Irregular matrix");
            }
            let det = det as f64;
            // The matrix [ a b ] is the inverse of [ a.0 b.0 ] .
            //            [ c d ]                   [ a.1 b.1 ]
            let a = self.b.1 as f64 / det;
            let b = -self.b.0 as f64 / det;
            let c = -self.a.1 as f64 / det;
            let d = self.a.0 as f64 / det;
            // Multiply [ab] * prize to get the result
            let na = self.prize.0 as f64 * a + self.prize.1 as f64 * b;
            let nb = self.prize.0 as f64 * c + self.prize.1 as f64 * d;
    
            // Only integer solutions are valid, verify rounded results:
            let ina = na.round() as i64;
            let inb = nb.round() as i64;
            let pos = (
                self.a.0 * ina + self.b.0 * inb,
                self.a.1 * ina + self.b.1 * inb,
            );
            if pos == self.prize {
                inb + 3 * ina
            } else {
                0
            }
        }
    
        fn translate(&self, tr: i64) -> Self {
            let prize = (self.prize.0 + tr, self.prize.1 + tr);
            Machine { prize, ..*self }
        }
    }
    
    impl From<&str> for Machine {
        fn from(s: &str) -> Self {
            static RE: LazyLock<(Regex, Regex)> = LazyLock::new(|| {
                (
                    Regex::new(r"Button [AB]: X\+(\d+), Y\+(\d+)").unwrap(),
                    Regex::new(r"Prize: X=(\d+), Y=(\d+)").unwrap(),
                )
            });
            let (re_btn, re_prize) = &*RE;
            let mut caps = re_btn.captures_iter(s);
            let (_, [a0, a1]) = caps.next().unwrap().extract();
            let a = (a0.parse().unwrap(), a1.parse().unwrap());
            let (_, [b0, b1]) = caps.next().unwrap().extract();
            let b = (b0.parse().unwrap(), b1.parse().unwrap());
            let (_, [p0, p1]) = re_prize.captures(s).unwrap().extract();
            let prize = (p0.parse().unwrap(), p1.parse().unwrap());
            Machine { a, b, prize }
        }
    }
    
    fn parse(input: String) -> Vec<Machine> {
        input.split("\n\n").map(Into::into).collect()
    }
    
    fn part1(input: String) {
        let machines = parse(input);
        let sum = machines.iter().map(|m| m.tokens_100()).sum::<i64>();
        println!("{sum}");
    }
    
    const TRANSLATION: i64 = 10000000000000;
    
    fn part2(input: String) {
        let machines = parse(input);
        let sum = machines
            .iter()
            .map(|m| m.translate(TRANSLATION).tokens_inv())
            .sum::<i64>();
        println!("{sum}");
    }
    
    util::aoc_main!();
    

    Also on github